Publication:
Chloride-Less Approach Using Waste Linker Source in Zirconium-based Metal-Organic Framework (UiO-66)

dc.citedby1
dc.contributor.authorAzmin A.N.en_US
dc.contributor.authorMisran H.en_US
dc.contributor.authorMatsumoto A.en_US
dc.contributor.authorid57220123847en_US
dc.contributor.authorid6506899840en_US
dc.contributor.authorid14525231700en_US
dc.date.accessioned2024-10-14T03:17:28Z
dc.date.available2024-10-14T03:17:28Z
dc.date.issued2023
dc.description.abstractUiO-66 was synthesized using a chloride-less approach with waste plastic bottles as a possible organic linker at room temperature. UiO-66 features an arrangement of structure from the coordination of zirconium-based metal clusters interconnected by benzene dicarboxylate (BDC) linkers. BDC can be extracted from waste plastic bottles by depolymerization. The structural comparison of UiO-66 using a pristine linker and PET-derived BDC linker was investigated with and without the presence of chloride ions. The (011), (111), (002), and (022) reflection planes from X-ray diffraction peaks for all samples show successful UiO-66 crystal formation. Thermal analysis on as-synthesized samples exhibited the decomposition in three stages of weight loss which are attributable to the solvent's evaporation at ca. 170C, loss of water molecules physisorbed in the structure at ca. 371C, and mass reduction at ca. 540C due to decomposition of organic linkers, respectively. FT-IR spectra exhibited absorption peaks corresponding to the stretching vibration (?-H) in asymmetric and symmetric C-H bonds in aromatic compounds originating from BDC. By using the Scherrer equation, the primary crystallite size was calculated at a range of ca. 15-32nm. The crystallite size calculated showed a similar value to the grain observed using a Williamson-Hall (WH) plot in the range of ca. 14-29nm. However, the WH plot for samples without chloride ions showed small crystallite sizes as well as low relative crystallinity suggesting loose agglomerations of the particles. � 2023 World Scientific Publishing Company.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo2350046
dc.identifier.doi10.1142/S0219581X23500461
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85167990424
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85167990424&doi=10.1142%2fS0219581X23500461&partnerID=40&md5=ea4a4bd76a172cb5c94b33b8fd529837
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/33932
dc.identifier.volume22
dc.publisherWorld Scientificen_US
dc.sourceScopus
dc.sourcetitleInternational Journal of Nanoscience
dc.subjectchloride-less
dc.subjectmetal-organic framework
dc.subjectUiO-66
dc.subjectwaste plastic
dc.subjectCarboxylation
dc.subjectChlorine compounds
dc.subjectCrystallinity
dc.subjectEthylene
dc.subjectMolecules
dc.subjectOrganometallics
dc.subjectPlastic bottles
dc.subjectPolyethylene terephthalates
dc.subjectPolypropylenes
dc.subjectStretching
dc.subjectThermoanalysis
dc.subjectChloride ions
dc.subjectChloride-less
dc.subjectDicarboxylates
dc.subjectMetal cluster
dc.subjectMetalorganic frameworks (MOFs)
dc.subjectOrganic linkers
dc.subjectSynthesised
dc.subjectUiO-66
dc.subjectWaste plastic
dc.subjectWilliamson-Hall plot
dc.subjectCrystallite size
dc.titleChloride-Less Approach Using Waste Linker Source in Zirconium-based Metal-Organic Framework (UiO-66)en_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections