Publication:
Efficient production of bioethanol from waste glycerol using microwave irradiation induced mutant Escherichia coli

Date
2014
Authors
Nomanbhay S.M.
Hussain R.
Journal Title
Journal ISSN
Volume Title
Publisher
Research Journal of Pharmaceutical, Biological and Chemical Sciences
Research Projects
Organizational Units
Journal Issue
Abstract
Crude glycerol, an inevitable byproduct during biodiesel production, is emerging as a potential feedstock for fermentation, due to its availability and a reasonable price. The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors. Dissimilation of glycerol by Escherichia coli is strictly linked to their capacity to synthesize the highly reduced product 1,3-propanediol (1,3-PDO). The present study is focus on the development of adaptive mutant strains of Escherichia coli EC-MW (ATCC 11105), through microwave irradiation, at frequency 2.45 GHz and irradiation time 5 min pulse irradiation. The mutants were used for high bioethanol production from glycerol feedstock. Consequently, glycerol oxidative pathway (bioethanol) enhanced upon the parallel reduction in the 1,3-propanediol (1,3-PDO) pathway. The modified E. coli strains were able to increase bioethanol production upon fermentation reaching the level 280 g/L.
Description
Keywords
Citation
Collections