Publication:
Effectively enhanced photocatalytic hydrogen production performance of novel noble metal-free Cu(OH)2/MoSe2-g-C3N4 ternary nanocomposite under visible light irradiation

dc.citedby0
dc.contributor.authorRameshbabu R.en_US
dc.contributor.authorSiaw Paw J.K.en_US
dc.contributor.authorVinoth V.en_US
dc.contributor.authorKumar R.S.en_US
dc.contributor.authorKumar N.en_US
dc.contributor.authorJadoun S.en_US
dc.contributor.authorPugazhenthiran N.en_US
dc.contributor.authorAmalraj J.en_US
dc.contributor.authorid55621066400en_US
dc.contributor.authorid57883504000en_US
dc.contributor.authorid56662096500en_US
dc.contributor.authorid36100384200en_US
dc.contributor.authorid57201635180en_US
dc.contributor.authorid57189469761en_US
dc.contributor.authorid23989733500en_US
dc.contributor.authorid8203356700en_US
dc.date.accessioned2025-03-03T07:41:21Z
dc.date.available2025-03-03T07:41:21Z
dc.date.issued2024
dc.description.abstractThe present work presents a novel copper hydroxide-molybdenum diselenide-carbon nitride (3 % Cu(OH)2/MoSe2-g-C3N4, (3CM-CN)) ternary nanocomposite catalyst. This catalyst was synthesized using a three-step process: hydrothermal synthesis, ball milling, and wet impregnation. The focus of this research is on the hydrogen generation (H?) capabilities of this novel material. The catalyst was extensively characterized using various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet?visible (UV?Vis) spectroscopy, photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS), resulting in a comprehensive understanding of its structure, morphology, optical properties, and surface composition. The catalytic activity and mechanism of Cu(OH)2/MoSe2-g-C3N4 composites were investigated. The ternary nanocomposite catalyst significantly enhanced hydrogen production, achieving rates 7.7 times greater than g-C3N4 and 4 times greater than 3 % Cu(OH)2/MoSe2 (3CM). Its maximum production reached an impressive 3012 �mol g?1 h?1. The analysis demonstrated a significant increase in active sites on the composite's surface, accompanied by an increase in the composite-specific surface area to 73 m2/g. The development of a ternary nanocomposite led to a higher rate of catalyst production for hydrogen generation while simultaneously decreasing the rate of electron-hole recombination. It gave an innovative strategy for constructing highly efficient composite catalysts for hydrogen generation very effectively. ? 2024 Elsevier Ltden_US
dc.description.natureFinalen_US
dc.identifier.ArtNo132944
dc.identifier.doi10.1016/j.fuel.2024.132944
dc.identifier.scopus2-s2.0-85202348398
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85202348398&doi=10.1016%2fj.fuel.2024.132944&partnerID=40&md5=cb0901af5bb8cda8e9928acc8f1fe429
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36081
dc.identifier.volume378
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleFuel
dc.subjectCarbon nitride
dc.subjectImpregnation
dc.subjectLayered semiconductors
dc.subjectNanoclay
dc.subjectPhotocatalytic activity
dc.subjectEnergy
dc.subjectHydrogen generations
dc.subjectHydrogen production performance
dc.subjectMetal free
dc.subjectNanocomposite catalyst
dc.subjectPhotocatalytic hydrogen production
dc.subjectTernary nanocomposites
dc.subjectVisible-light irradiation
dc.subjectWet impregnation method
dc.subjectX ray photoelectron spectroscopy
dc.titleEffectively enhanced photocatalytic hydrogen production performance of novel noble metal-free Cu(OH)2/MoSe2-g-C3N4 ternary nanocomposite under visible light irradiationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections