Publication:
Modeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical method

dc.citedby11
dc.contributor.authorAhmad I.en_US
dc.contributor.authorMekawy I.en_US
dc.contributor.authorKhan M.N.en_US
dc.contributor.authorJan R.en_US
dc.contributor.authorBoulaaras S.en_US
dc.contributor.authorid57220824630en_US
dc.contributor.authorid57222488593en_US
dc.contributor.authorid57205304990en_US
dc.contributor.authorid57205596279en_US
dc.contributor.authorid36994353700en_US
dc.date.accessioned2025-03-03T07:47:52Z
dc.date.available2025-03-03T07:47:52Z
dc.date.issued2024
dc.description.abstractFractional diffusion partial differential equation (PDE) models are used to describe anomalous transport phenomena in fractal porous media, where traditional diffusion models may not be applicable due to the presence of long-range dependencies and non-local behaviors. This study presents an efficient hybrid meshless method to the compute numerical solution of a two-dimensional multiterm time-fractional convection-diffusion equation. The proposed meshless method employs multiquadric-cubic radial basis functions for the spatial derivatives, and the Liouville-Caputo derivative technique is used for the time derivative portion of the model equation. The accuracy of the method is evaluated using error norms, and a comparison is made with the exact solution. The numerical results demonstrate that the suggested approach achieves better accuracy and computationally efficient performance. ? 2024 the author(s), published by De Gruyter.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo20220366
dc.identifier.doi10.1515/nleng-2022-0366
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85187712625
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85187712625&doi=10.1515%2fnleng-2022-0366&partnerID=40&md5=4f7a65a7a9b85666e1bcb0fe603dbc25
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/37136
dc.identifier.volume13
dc.publisherWalter de Gruyter GmbHen_US
dc.relation.ispartofAll Open Access; Gold Open Access
dc.sourceScopus
dc.sourcetitleNonlinear Engineering
dc.subjectDiffusion in liquids
dc.subjectFractals
dc.subjectHeat conduction
dc.subjectHeat convection
dc.subjectImage segmentation
dc.subjectPartial differential equations
dc.subjectPorous materials
dc.subjectRadial basis function networks
dc.subjectBase function
dc.subjectConvection-diffusion models
dc.subjectFractional derivatives
dc.subjectHybrid multiquadric-cubic radial base function
dc.subjectMeshless collocation methods
dc.subjectModeling equations
dc.subjectMulti terms
dc.subjectMultiquadrics
dc.subjectMultiterm time-fractional convection-diffusion model equation
dc.subjectRadial basis
dc.subjectNumerical methods
dc.titleModeling anomalous transport in fractal porous media: A study of fractional diffusion PDEs using numerical methoden_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections