Publication:
A Hybrid Artificial Intelligence Model for Detecting Keratoconus

No Thumbnail Available
Date
2022
Authors
Alyasseri Z.A.A.
Al-Timemy A.H.
Abasi A.K.
Lavric A.
Mohammed H.J.
Takahashi H.
Milhomens Filho J.A.
Campos M.
Hazarbassanov R.M.
Yousefi S.
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Research Projects
Organizational Units
Journal Issue
Abstract
Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of S�o Paulo, S�o Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus. � 2022 by the authors.
Description
Keywords
Citation
Collections