Publication:
Enhancing Photovoltaic-Thermoelectric Generator (PV-TEG) system performance via mathematical modeling and advanced thermal interface material: An emphasis on Pyrolytic graphite Sheet (PGS)

dc.citedby14
dc.contributor.authorMahmoud AL Shurafa S.en_US
dc.contributor.authorBasim Ismail F.en_US
dc.contributor.authorKazem H.A.en_US
dc.contributor.authorEe Sann T.en_US
dc.contributor.authorAbdel Hameed Almajali T.en_US
dc.contributor.authorid58977038500en_US
dc.contributor.authorid58027086700en_US
dc.contributor.authorid24466476000en_US
dc.contributor.authorid58977184600en_US
dc.contributor.authorid58977064700en_US
dc.date.accessioned2025-03-03T07:43:14Z
dc.date.available2025-03-03T07:43:14Z
dc.date.issued2024
dc.description.abstractPV-TEG systems utilize waste heat by using TEGs under PV panels. TEGs improve the efficiency of PV and generates more energy. However, rough metal surfaces at contact points reduce the system's thermal efficiency and create air gaps. This paper employs a mathematical model based on principles of thermal resistances and energy conservation. The proposed model is built using MATLAB R2020a. The paper assessed the effectiveness of a Pyrolytic Graphite Sheet (PGS) as a Thermal Interface Material (TIM) in PV-TEG systems and three cooling approaches. The investigation explores two configurations (parallel and bent) of PGS and five TIM materials. The results indicate that bent PGS is the most effective. It lowers the temperature of the PV panels to 18.99 ?, 19.95 ?, and 20.74 ?. As a result, the power increased to 0.606 W, 0.639 W, and 0.667 W. Additionally, the efficiency improves to 1.66 %, 1.75 %, and 1.82 % with natural air, forced air, and forced water cooling, respectively. The results show that PGS can improve PV-TEG system performance and solve thermal issues with metal surfaces and air gaps. ? 2024 International Solar Energy Societyen_US
dc.description.natureFinalen_US
dc.identifier.ArtNo112514
dc.identifier.doi10.1016/j.solener.2024.112514
dc.identifier.scopus2-s2.0-85189863889
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85189863889&doi=10.1016%2fj.solener.2024.112514&partnerID=40&md5=edcc6e43c686c8bfb6e89cd738e928ff
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36587
dc.identifier.volume273
dc.publisherElsevier Ltden_US
dc.sourceScopus
dc.sourcetitleSolar Energy
dc.subjectCooling systems
dc.subjectElectronic equipment
dc.subjectInterfaces (materials)
dc.subjectPhotoelectrochemical cells
dc.subjectSolar panels
dc.subjectSolar power generation
dc.subjectThermal insulating materials
dc.subjectThermoelectric equipment
dc.subjectWaste heat
dc.subjectCarbon-based
dc.subjectCarbon-based thermal interface material
dc.subjectGraphite sheets
dc.subjectPhotovoltaic
dc.subjectPhotovoltaic-thermoelectric generator
dc.subjectPhotovoltaics
dc.subjectPyrolytic graphite
dc.subjectPyrolytic graphite sheet
dc.subjectThermal interface material
dc.subjectThermal interface materials
dc.subjectThermoelectric generators
dc.subjectcooling
dc.subjectelectricity
dc.subjectenergy efficiency
dc.subjectequipment component
dc.subjectheating
dc.subjectnumerical model
dc.subjectperformance assessment
dc.subjectphotovoltaic system
dc.subjectPyrolytic graphite
dc.titleEnhancing Photovoltaic-Thermoelectric Generator (PV-TEG) system performance via mathematical modeling and advanced thermal interface material: An emphasis on Pyrolytic graphite Sheet (PGS)en_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections