Publication:
Hydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor application

dc.citedby6
dc.contributor.authorManikandan M.en_US
dc.contributor.authorPrasankumar T.en_US
dc.contributor.authorManikandan E.en_US
dc.contributor.authorPapanasam E.en_US
dc.contributor.authorRamesh K.en_US
dc.contributor.authorRamesh S.en_US
dc.contributor.authorid57219446093en_US
dc.contributor.authorid57191483300en_US
dc.contributor.authorid57199646510en_US
dc.contributor.authorid56565642400en_US
dc.contributor.authorid57220754709en_US
dc.contributor.authorid7103211834en_US
dc.date.accessioned2025-03-03T07:41:21Z
dc.date.available2025-03-03T07:41:21Z
dc.date.issued2024
dc.description.abstractNanostructured materials incorporating transition metal sulfides have demonstrated considerable potential across various applications, particularly in the realms of energy production and storage. Sulfide-based material preparation is a challenging and costly procedure that requires a high temperature and reducing atmosphere. This work reports that manganese cobalt sulfide (MCS) and reduced graphene oxide composite manganese cobalt sulfide (rMCS) were successfully prepared through a hydrothermal method. Various characterization techniques were employed to analyze the prepared materials, including X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, and X-ray photoelectron spectroscopy. In a three-electrode system, MCS and rMCS electrodes exhibit an excellent specific capacitance of 1695 and 1925�F g?1 at 1�A g?1 current density respectively. MCS delivers the capacitance retention of 99% and rMCS exhibits the capacitance retention of 100% capacitance retention over 5000 consecutive cycles. The constructed asymmetric supercapacitor electrode (rMCS//rGO) exhibits the energy and power density of 64 Wh kg?1 at 799�W kg?1, respectively with outstanding cyclic stability of 97.4% even after 10,000 cycles. The exceptional electrochemical properties of MCS with rGO composite electrode indicate that they would make an outstanding electrode material for cutting-edge energy storage devices. ? The Author(s) 2024.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo25596
dc.identifier.doi10.1038/s41598-024-77245-5
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85208095870
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85208095870&doi=10.1038%2fs41598-024-77245-5&partnerID=40&md5=34d97de1b4a71017c2f8fbc8b01c0b66
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36080
dc.identifier.volume14
dc.publisherNature Researchen_US
dc.sourceScopus
dc.sourcetitleScientific Reports
dc.subjectcobalt
dc.subjectgraphene oxide
dc.subjectmanganese
dc.subjectnanomaterial
dc.subjectsulfide
dc.subjecttransition element
dc.subjectarticle
dc.subjectBrunauer Emmett Teller method
dc.subjectcontrolled study
dc.subjectcurrent density
dc.subjectdensity
dc.subjectelectrode
dc.subjectenergy yield
dc.subjectfield emission scanning electron microscopy
dc.subjecthigh temperature
dc.subjectsynthesis
dc.subjectthree electrode system
dc.subjecttransmission electron microscopy
dc.subjectX ray diffraction
dc.subjectX ray photoemission spectroscopy
dc.titleHydrothermal synthesis of rGO and MnCoS composite for enhanced supercapacitor applicationen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections