Publication:
Numerical analysis of fishtailing motion, buoy kissing and pullback force in a catenary anchor leg mooring (CALM) moored tanker system

dc.citedby2
dc.contributor.authorJu X.en_US
dc.contributor.authorAmaechi C.V.en_US
dc.contributor.authorDong B.en_US
dc.contributor.authorMeng X.en_US
dc.contributor.authorLi J.en_US
dc.contributor.authorid56348761500en_US
dc.contributor.authorid57204818354en_US
dc.contributor.authorid57742899200en_US
dc.contributor.authorid57742413200en_US
dc.contributor.authorid57972919200en_US
dc.date.accessioned2024-10-14T03:18:33Z
dc.date.available2024-10-14T03:18:33Z
dc.date.issued2023
dc.description.abstractThe catenary anchor leg mooring (CALM) sys tem is one of the most complex hydrodynamic systems in terms of hydrodynamic theory. This complexity comes from a large amount of interaction between the buoy, its mooring legs, hawsers, and the moored tanker. A dynamic simulation analysis of a CALM moored tanker system is carried out in this research. A double spring hydrodynamic response system model composed of �Anchoring-Buoy� and �Hawser-Tanker� established for the CALM system in the given environmental conditions with the method of time domain coupling simulation, correlation, and comprehensive analysis simulations of the fishtailing motion, buoy kissing, hawser capacity, and pullback force. A numerical analysis shows that without pullback force, fishtailing occurs often. A pullback force of 800 kN in line with the tanker's centerline effectively reduces the yaw motion and preserves a safe distance between the tanker and the buoy, so fishtailing occurs less often, and buoy kissing does not occur. Thus, the pullback force of 800 kN represents astern propulsion and a pullback tug, as it significantly improves the behavior of the moored tanker in relation to the buoy. Therefore, it is recommended that a tug is always present while a tanker is moored to the CALM system. � 2023en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo114236
dc.identifier.doi10.1016/j.oceaneng.2023.114236
dc.identifier.scopus2-s2.0-85151633777
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85151633777&doi=10.1016%2fj.oceaneng.2023.114236&partnerID=40&md5=3522ae8253258f4b219965205a06fc87
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/34233
dc.identifier.volume278
dc.publisherElsevier Ltden_US
dc.relation.ispartofAll Open Access
dc.relation.ispartofHybrid Gold Open Access
dc.sourceScopus
dc.sourcetitleOcean Engineering
dc.subjectCatenary anchor leg mooring
dc.subjectFishtailing
dc.subjectFloating buoy
dc.subjectHydrodynamic
dc.subjectMooring
dc.subjectOffshore floating structure
dc.subjectTanker
dc.subjectBuoys
dc.subjectMooring
dc.subjectMooring cables
dc.subjectNumerical analysis
dc.subjectOffshore oil well production
dc.subjectTime domain analysis
dc.subjectCatenary anchor leg moorings
dc.subjectFishtailing
dc.subjectFishtailing motion
dc.subjectFloating buoy
dc.subjectFloating structures
dc.subjectHawsers
dc.subjectHydrodynamic systems
dc.subjectMooring system
dc.subjectOffshore floating
dc.subjectOffshore floating structure
dc.subjectenvironmental conditions
dc.subjectfloating structure
dc.subjecthydrodynamics
dc.subjectmooring system
dc.subjectnumerical method
dc.subjectoffshore structure
dc.subjectHydrodynamics
dc.titleNumerical analysis of fishtailing motion, buoy kissing and pullback force in a catenary anchor leg mooring (CALM) moored tanker systemen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections