Publication:
Characterization of nickel plated copper heat spreaders with different catalytic activation processes for flip-chip ball grid array package

dc.citedby0
dc.contributor.authorLim V.en_US
dc.contributor.authorAhmad I.en_US
dc.contributor.authorSeng F.C.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorRasid R.en_US
dc.contributor.authorid26432767800en_US
dc.contributor.authorid12792216600en_US
dc.contributor.authorid26432892000en_US
dc.contributor.authorid7102424614en_US
dc.contributor.authorid6507511729en_US
dc.date.accessioned2023-12-29T07:55:50Z
dc.date.available2023-12-29T07:55:50Z
dc.date.issued2008
dc.description.abstractThis paper presents the effects of two different catalytic activation techniques on the thermal performance of flip chip heat spreaders. The two activation techniques investigated are i) thin nickel-copper strike and ii) galvanic initiation. Thermal diffusivity of these heat spreaders was studied using the Nano-flash Apparatus [1]. High temperature storage tests were run to investigate the extent of intermetallic diffusion between the nickel and copper layers. The results obtained showed that heat spreaders processed with thin nickel-copper strike catalytic activation technique formed thick nickel-copper intermetallic layers compared to those processed with galvanic initiation. Nickel-copper intermetallic layers have lower thermal conductivity compared to pure copper [2]. As a result, heat spreaders processed with thin nickel copper strike have lower thermal diffusivity values averaged at 35-65W/mK XX compared to 60-85W/mK YY measured for those processed with galvanic-initiation. It is also discovered that the nickel-copper intermetallic layers of these heat spreaders grew thicker from 0.2?m at initial time until around 0.55?m after high temperature storage of 168 hours, further degrading the thermal diffusivity of these heat spreaders. As a conclusion, the galvanic initiation technique provides better thermal performance for heat spreaders used in semiconductor packages.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo5507785
dc.identifier.doi10.1109/IEMT.2008.5507785
dc.identifier.scopus2-s2.0-77955104271
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-77955104271&doi=10.1109%2fIEMT.2008.5507785&partnerID=40&md5=1cc851eee520cc2f0f2677978ca6ec7f
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30917
dc.sourceScopus
dc.sourcetitleProceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium
dc.subjectElectronics packaging
dc.subjectFlip chip devices
dc.subjectHeating equipment
dc.subjectMixed convection
dc.subjectNickel
dc.subjectNickel alloys
dc.subjectSoldering alloys
dc.subjectSpreaders
dc.subjectThermal diffusion
dc.subjectThermal diffusivity
dc.subjectActivation techniques
dc.subjectAfter high temperature
dc.subjectCatalytic activation
dc.subjectCopper heat spreader
dc.subjectCopper layer
dc.subjectCopper strike
dc.subjectFlip chip
dc.subjectFlip chip ball grid array
dc.subjectHeat spreaders
dc.subjectHigh temperature storage test
dc.subjectInitial time
dc.subjectIntermetallic diffusion
dc.subjectIntermetallic layer
dc.subjectPure copper
dc.subjectSemiconductor packages
dc.subjectThermal Performance
dc.subjectCopper
dc.titleCharacterization of nickel plated copper heat spreaders with different catalytic activation processes for flip-chip ball grid array packageen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
Files
Collections