Publication: A novel and high capacity audio steganography algorithm based on adaptive data embedding positions
dc.citedby | 10 | |
dc.contributor.author | Shahadi H.I. | en_US |
dc.contributor.author | Jidin R. | en_US |
dc.contributor.author | Way W.H. | en_US |
dc.contributor.authorid | 54956597100 | en_US |
dc.contributor.authorid | 6508169028 | en_US |
dc.contributor.authorid | 55936039400 | en_US |
dc.date.accessioned | 2023-05-16T02:47:59Z | |
dc.date.available | 2023-05-16T02:47:59Z | |
dc.date.issued | 2014 | |
dc.description.abstract | In this study, a novel and high embedding capacity audio steganography scheme based on Lifting Wavelet Transform (LWT) and adaptive embedding positions is proposed. Specifically, the message data is inserted in the imperceptible positions that chosen from the coefficients of detail sub-bands taking advantage of our proposed Weighted Block Matching (WBM). The WBM is preceded by preparing the cover audio in order to select the bits-positions that can possibly be used for embedding from each detail coefficient based on coefficient amplitude then copy the contents of the selected bits-positions and arrange them in blocks of bits. Also, the message data is arranged in blocks of bits after preprocessed and encrypted. The WBM computes the matching between each message block and whole extracted cover blocks to find the similarity between them. This process help to provide optimal locations to hide the message blocks. These locations are considered as a stego-key that is ciphered and hided within the final detail sub-band which is specified for this purpose. The proposed approach attains higher security than other fixed embedding positions approaches because the random positions for the embedded message blocks based on adaptive selection for embedding positions. Experimental results show that the proposed technique is not only has very high embedding capacity (exceed 300 kbps) with excellent transparency (above 35 dB for the cover to noise ratio), but also achieve lossless massage retrieved. Comparisons with the related audio steganography algorithms also show that our proposed scheme outperforms all the selected algorithms. © Maxwell Scientific Organization, 2014. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.doi | 10.19026/rjaset.7.531 | |
dc.identifier.epage | 2323 | |
dc.identifier.issue | 11 | |
dc.identifier.scopus | 2-s2.0-84898028183 | |
dc.identifier.spage | 2311 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84898028183&doi=10.19026%2frjaset.7.531&partnerID=40&md5=3736fd0ffeb4713375cdb24d355af84b | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/22164 | |
dc.identifier.volume | 7 | |
dc.publisher | Maxwell Science Publications | en_US |
dc.relation.ispartof | All Open Access, Hybrid Gold, Green | |
dc.source | Scopus | |
dc.sourcetitle | Research Journal of Applied Sciences, Engineering and Technology | |
dc.title | A novel and high capacity audio steganography algorithm based on adaptive data embedding positions | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |