Publication:
A portable electromagnetic head imaging system using metamaterial loaded compact directional 3d antenna

dc.citedby12
dc.contributor.authorShahidul Islam M.en_US
dc.contributor.authorIslam M.T.en_US
dc.contributor.authorHoque A.en_US
dc.contributor.authorIslam M.T.en_US
dc.contributor.authorAmin N.en_US
dc.contributor.authorChowdhury M.E.H.en_US
dc.contributor.authorid57222862832en_US
dc.contributor.authorid55328836300en_US
dc.contributor.authorid56611571000en_US
dc.contributor.authorid57217440527en_US
dc.contributor.authorid7102424614en_US
dc.contributor.authorid8964151000en_US
dc.date.accessioned2023-05-29T09:11:57Z
dc.date.available2023-05-29T09:11:57Z
dc.date.issued2021
dc.descriptionAntenna arrays; Directive antennas; Imaging systems; Metamaterial antennas; Metamaterials; Mobile antennas; Phantoms; Slot antennas; Antenna bandwidth; Antenna performance; Array elements; Free spaces; Frequency ranges; Haemorrhage; Metamaterial (MTM); Parasitic element; Microwave antennasen_US
dc.description.abstractA non-invasive, low-powered, and portable electromagnetic (EM) head imaging system is presented using metamaterial (MTM) loaded compact directional 3D antenna. The antenna consists of two slotted dipole elements with $2\times 3$ and $3\times 3$ finite MTM array elements in top and ground, respectively, and folded parasitic elements that operate within the frequency range of 1.12 GHz to 2.5 GHz. The MTM array elements are optimized to enhance the overall performance regarding antenna bandwidth, realized gain, efficiency, and directionality in both free space and proximity to the head model. The mathematical modelling is also analyzed to justify the integration of MTM unit cells to the top and ground side of the antenna. The impact of MTM on SAR analysis is also performed. A tissue-mimicking 3D head phantom is fabricated and measured to validate the antenna performance. A nine-antenna portable setup is used with the fabricated phantom to measure and collect the scattering parameters that are later analyzed to detect and reconstruct the haemorrhage images by applying the updated IC-CF-DMAS algorithm. The overall performance demonstrates the feasibility of the proposed system as a portable platform to successfully detect, locate and monitor the haemorrhages inside the head in EM imaging system. � 2013 IEEE.en_US
dc.description.natureFinalen_US
dc.identifier.ArtNo9389733
dc.identifier.doi10.1109/ACCESS.2021.3069712
dc.identifier.epage50906
dc.identifier.scopus2-s2.0-85103768230
dc.identifier.spage50893
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85103768230&doi=10.1109%2fACCESS.2021.3069712&partnerID=40&md5=de209da184bb7d478645e1f1483bbf5c
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/26560
dc.identifier.volume9
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofAll Open Access, Gold
dc.sourceScopus
dc.sourcetitleIEEE Access
dc.titleA portable electromagnetic head imaging system using metamaterial loaded compact directional 3d antennaen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections