Publication:
Single-ended primary inductor converter (SEPIC) for LED application

No Thumbnail Available
Date
2018
Authors
Jabbar A.F.Y.
Mansor M.
Jaafar S.
Journal Title
Journal ISSN
Volume Title
Publisher
Institution of Engineering and Technology
Research Projects
Organizational Units
Journal Issue
Abstract
This paper focuses on the design of a capacitor diode (CD) resistor-less snubber that is able to reduce the power loss with improved efficiency for a MOSFET switch in a single-ended primary-inductor converter (SEPIC) for LED application. There are many types of snubber circuit available in the literature; however, the basic concept literally consists of inductor, capacitor, resistor and diode. The conventional method that includes a resistor should be avoided since it promotes a higher loss in the converter. Among the most used topology for LED driver is the single-ended primary-inductor converter (SEPIC). This topology has efficiency up to 90%, small in size and weight. Another advantage using a SEPIC; it is capable of producing an output that is smaller or higher than the input, making it suitable for wide input operation. The proposed CD snubber will be tested on an isolated SEPIC with 238V input voltage, 30V output at 100kHz configuration which is simulated in MATLAB/Simulink to verify the capability of proposed snubber circuit. � 2018 Institution of Engineering and Technology. All rights reserved.
Description
Light emitting diodes; MOSFET devices; Resistors; Topology; Conventional methods; Isolated SEPIC; LED drivers; MATLAB /simulink; MOSFET switches; Passive snubbers; Single ended primary inductor converter (SEPIC); Snubber circuit; Electric inductors
Keywords
Citation
Collections