Publication:
Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters

dc.citedby44
dc.contributor.authorMd Ralib A.A.en_US
dc.contributor.authorNordin A.N.en_US
dc.contributor.authorSalleh H.en_US
dc.contributor.authorOthman R.en_US
dc.contributor.authorid36537608500en_US
dc.contributor.authorid7005958999en_US
dc.contributor.authorid24067645400en_US
dc.contributor.authorid7003407400en_US
dc.date.accessioned2023-12-29T07:46:31Z
dc.date.available2023-12-29T07:46:31Z
dc.date.issued2012
dc.description.abstractThin film piezoelectric materials play an essential role in micro electro mechanical system (MEMS) energy harvesting due to its low power requirement and high available energy densities. Non-ferroelectric piezoelectric materials such as ZnO and AlN are highly silicon compatible making it suitable for MEMS energy harvesters in self-powered microsystems. This work primarily describe the design, simulation and fabrication of aluminium doped zinc oxide (AZO) cantilever beam deposited on <100> silicon substrate. AZO was chosen due its high piezoelectric coupling coefficient, ease of deposition and excellent bonding with silicon substrate. Doping of ZnO with Al has improved the electrical properties, conductivity and thermal stability. The proposed design operates in transversal mode (d31 mode) which was structured as a parallel plated capacitor using Si/Al/AZO/Al layers. The highlight of this work is the successful design and fabrication of Al/AZO/Al on <100> silicon as the substrate to make the device CMOS compatible for electronic functionality integration. Design and finite element modeling was conducted using COMSOL� software to estimate the resonance frequency. RF Magnetron sputtering was chosen as the deposition method for aluminium and AZO. Material characterization was performed using X-ray diffraction and field emission scanning electron microscopy to evaluate the piezoelectric qualities, surface morphology and the cross section. The fabricated energy harvester generated 1.61 V open circuit output voltage at 7.77 MHz resonance frequency. The experimental results agreed with the simulation results. The measured output voltage is sufficient for low power wireless sensor nodes as an alternative power sources to traditional chemical batteries. � Springer-Verlag 2012.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s00542-012-1550-9
dc.identifier.epage1769
dc.identifier.issue11
dc.identifier.scopus2-s2.0-84870239141
dc.identifier.spage1761
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84870239141&doi=10.1007%2fs00542-012-1550-9&partnerID=40&md5=992dad9656e165659c1b852c2c8d19bf
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30305
dc.identifier.volume18
dc.pagecount8
dc.sourceScopus
dc.sourcetitleMicrosystem Technologies
dc.subjectAluminum
dc.subjectChemical bonds
dc.subjectDesign
dc.subjectElectric properties
dc.subjectEnergy harvesting
dc.subjectFabrication
dc.subjectField emission microscopes
dc.subjectFinite element method
dc.subjectMagnetron sputtering
dc.subjectMEMS
dc.subjectNatural frequencies
dc.subjectPiezoelectric materials
dc.subjectSensor nodes
dc.subjectSilicon
dc.subjectThin films
dc.subjectVapor deposition
dc.subjectX ray diffraction
dc.subjectZinc oxide
dc.subjectAlN
dc.subjectAvailable energy density
dc.subjectChemical batteries
dc.subjectCMOS Compatible
dc.subjectDeposition methods
dc.subjectElectronic functionality
dc.subjectEnergy Harvester
dc.subjectField emission scanning electron microscopy
dc.subjectFinite element modeling
dc.subjectLow Power
dc.subjectLow power wireless
dc.subjectMaterial characterizations
dc.subjectOpen-circuit output voltages
dc.subjectOutput voltages
dc.subjectPiezoelectric couplings
dc.subjectPiezoelectric MEMS
dc.subjectPiezoelectric thin films
dc.subjectPower sources
dc.subjectResonance frequencies
dc.subjectrf-Magnetron sputtering
dc.subjectSelf-powered
dc.subjectSilicon substrates
dc.subjectThin film piezoelectric
dc.subjectTransversal modes
dc.subjectZnO
dc.subjectPiezoelectricity
dc.titleFabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvestersen_US
dc.typeConference paperen_US
dspace.entity.typePublication
Files
Collections