Publication:
Engineering the electrochemical performance of CoWO4 composites of MXene by transitional metal ion doping for high energy density supercapacitors

dc.citedby2
dc.contributor.authorVigneshwaran J.en_US
dc.contributor.authorPrasankumar T.en_US
dc.contributor.authorAnsari M.N.M.en_US
dc.contributor.authorLim H.-T.en_US
dc.contributor.authorYuliarto B.en_US
dc.contributor.authorJose S.P.en_US
dc.contributor.authorid57204968432en_US
dc.contributor.authorid57191483300en_US
dc.contributor.authorid55489853600en_US
dc.contributor.authorid14719827400en_US
dc.contributor.authorid6506346884en_US
dc.contributor.authorid7004023140en_US
dc.date.accessioned2025-03-03T07:42:58Z
dc.date.available2025-03-03T07:42:58Z
dc.date.issued2024
dc.description.abstractThis investigation presents a straightforward synthesis method for a CoWO4@Ti3C2Tx composite doped with transitional metals, serving as innovative cathode materials for supercapacitors. The study delves into the structural, morphological, and electrochemical attributes of these composites, revealing that the Ni-doped variant outperforms its Zn/Cu-doped counterparts in capacitive capabilities. Specifically, the Ni-doped MXene composite within the CoWO4 electrode exhibits a remarkable specific capacitance of 630�F�g?1 at a current density of 1�A�g?1, showcasing superior performance. Moreover, this composite demonstrates notable cycling stability, retaining 92% of its initial capacitance over 10000 cycles. To further explore practical applications, an asymmetric supercapacitor coin cell (CR2032) was assembled, when displays a high voltage window of 1.6�V in a 1�M�H2SO4 electrolyte, yielding a specific capacitance of 248�F�g?1 at 1�A�g?1. Notably, the device achieves an energy density of 63.8�Wh�kg?1 at a power density of 422�W�kg?1, accompanied by an impressive 95.6% coulombic efficiency. The practical viability of the fabricated supercapacitor prototype is underscored by its ability to power a green light-emitting diode within 10�min of a 10-s charge. This highlights the potential of the composite electrode material for constructing high-performance supercapacitors, assessed morphologically and benchmarked against other metal-doped samples. ? The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024.en_US
dc.description.natureFinalen_US
dc.identifier.doi10.1007/s10853-024-09828-6
dc.identifier.epage10970
dc.identifier.issue24
dc.identifier.scopus2-s2.0-85195960149
dc.identifier.spage10953
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85195960149&doi=10.1007%2fs10853-024-09828-6&partnerID=40&md5=6698b1d7f910afe8c54b9a885e3991a1
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/36541
dc.identifier.volume59
dc.pagecount17
dc.publisherSpringeren_US
dc.sourceScopus
dc.sourcetitleJournal of Materials Science
dc.subjectCapacitance
dc.subjectCathodes
dc.subjectCobalt compounds
dc.subjectElectrolytes
dc.subjectMetal ions
dc.subjectNickel compounds
dc.subjectCathodes material
dc.subjectElectrochemical performance
dc.subjectHigher energy density
dc.subjectMetal ion-doping
dc.subjectNi-doped
dc.subjectPerformance
dc.subjectSpecific capacitance
dc.subjectSynthesis method
dc.subjectTransitional metal ions
dc.subjectTransitional metals
dc.subjectSupercapacitor
dc.titleEngineering the electrochemical performance of CoWO4 composites of MXene by transitional metal ion doping for high energy density supercapacitorsen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections