Publication: Engineering the electrochemical performance of CoWO4 composites of MXene by transitional metal ion doping for high energy density supercapacitors
dc.citedby | 2 | |
dc.contributor.author | Vigneshwaran J. | en_US |
dc.contributor.author | Prasankumar T. | en_US |
dc.contributor.author | Ansari M.N.M. | en_US |
dc.contributor.author | Lim H.-T. | en_US |
dc.contributor.author | Yuliarto B. | en_US |
dc.contributor.author | Jose S.P. | en_US |
dc.contributor.authorid | 57204968432 | en_US |
dc.contributor.authorid | 57191483300 | en_US |
dc.contributor.authorid | 55489853600 | en_US |
dc.contributor.authorid | 14719827400 | en_US |
dc.contributor.authorid | 6506346884 | en_US |
dc.contributor.authorid | 7004023140 | en_US |
dc.date.accessioned | 2025-03-03T07:42:58Z | |
dc.date.available | 2025-03-03T07:42:58Z | |
dc.date.issued | 2024 | |
dc.description.abstract | This investigation presents a straightforward synthesis method for a CoWO4@Ti3C2Tx composite doped with transitional metals, serving as innovative cathode materials for supercapacitors. The study delves into the structural, morphological, and electrochemical attributes of these composites, revealing that the Ni-doped variant outperforms its Zn/Cu-doped counterparts in capacitive capabilities. Specifically, the Ni-doped MXene composite within the CoWO4 electrode exhibits a remarkable specific capacitance of 630�F�g?1 at a current density of 1�A�g?1, showcasing superior performance. Moreover, this composite demonstrates notable cycling stability, retaining 92% of its initial capacitance over 10000 cycles. To further explore practical applications, an asymmetric supercapacitor coin cell (CR2032) was assembled, when displays a high voltage window of 1.6�V in a 1�M�H2SO4 electrolyte, yielding a specific capacitance of 248�F�g?1 at 1�A�g?1. Notably, the device achieves an energy density of 63.8�Wh�kg?1 at a power density of 422�W�kg?1, accompanied by an impressive 95.6% coulombic efficiency. The practical viability of the fabricated supercapacitor prototype is underscored by its ability to power a green light-emitting diode within 10�min of a 10-s charge. This highlights the potential of the composite electrode material for constructing high-performance supercapacitors, assessed morphologically and benchmarked against other metal-doped samples. ? The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.doi | 10.1007/s10853-024-09828-6 | |
dc.identifier.epage | 10970 | |
dc.identifier.issue | 24 | |
dc.identifier.scopus | 2-s2.0-85195960149 | |
dc.identifier.spage | 10953 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85195960149&doi=10.1007%2fs10853-024-09828-6&partnerID=40&md5=6698b1d7f910afe8c54b9a885e3991a1 | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/36541 | |
dc.identifier.volume | 59 | |
dc.pagecount | 17 | |
dc.publisher | Springer | en_US |
dc.source | Scopus | |
dc.sourcetitle | Journal of Materials Science | |
dc.subject | Capacitance | |
dc.subject | Cathodes | |
dc.subject | Cobalt compounds | |
dc.subject | Electrolytes | |
dc.subject | Metal ions | |
dc.subject | Nickel compounds | |
dc.subject | Cathodes material | |
dc.subject | Electrochemical performance | |
dc.subject | Higher energy density | |
dc.subject | Metal ion-doping | |
dc.subject | Ni-doped | |
dc.subject | Performance | |
dc.subject | Specific capacitance | |
dc.subject | Synthesis method | |
dc.subject | Transitional metal ions | |
dc.subject | Transitional metals | |
dc.subject | Supercapacitor | |
dc.title | Engineering the electrochemical performance of CoWO4 composites of MXene by transitional metal ion doping for high energy density supercapacitors | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |