Publication: Feature extraction method and neural network pattern recognition on time-resolved partial discharge signals
dc.citedby | 2 | |
dc.contributor.author | Tho N.T.N. | en_US |
dc.contributor.author | Chakrabarty C.K. | en_US |
dc.contributor.author | Siah Y.K. | en_US |
dc.contributor.author | Ghani A.B.Abd. | en_US |
dc.contributor.authorid | 54584502600 | en_US |
dc.contributor.authorid | 6701755282 | en_US |
dc.contributor.authorid | 24448864400 | en_US |
dc.contributor.authorid | 24469638000 | en_US |
dc.date.accessioned | 2023-12-29T07:47:43Z | |
dc.date.available | 2023-12-29T07:47:43Z | |
dc.date.issued | 2011 | |
dc.description.abstract | Magnetic sensor is a relatively new method to collect time-resolved partial discharge (PD) signals in XLPE cables. This paper proposes a simple yet effective method to recognize patterns of PD signals obtained from the magnetic sensor. The technique consists of wavelet transformation to de-noise the signals, statistical analysis to extract features and multi-layer perceptron back propagation (MLP BP) neural network to classify different types of PD signals. The result is elaborated in this paper. � 2011 IEEE. | en_US |
dc.description.nature | Final | en_US |
dc.identifier.ArtNo | 6079231 | |
dc.identifier.doi | 10.1109/ICOS.2011.6079231 | |
dc.identifier.epage | 246 | |
dc.identifier.scopus | 2-s2.0-83155163787 | |
dc.identifier.spage | 243 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-83155163787&doi=10.1109%2fICOS.2011.6079231&partnerID=40&md5=e01ef340f09ca6cd28b985f73635f2bf | |
dc.identifier.uri | https://irepository.uniten.edu.my/handle/123456789/30427 | |
dc.pagecount | 3 | |
dc.source | Scopus | |
dc.sourcetitle | 2011 IEEE Conference on Open Systems, ICOS 2011 | |
dc.subject | neural network | |
dc.subject | partial discharge | |
dc.subject | pattern recognition | |
dc.subject | statistical method | |
dc.subject | time-resolved signals | |
dc.subject | wavelet de-noising | |
dc.subject | Backpropagation | |
dc.subject | Feature extraction | |
dc.subject | Magnetic sensors | |
dc.subject | Partial discharges | |
dc.subject | Pattern recognition | |
dc.subject | Pattern recognition systems | |
dc.subject | Statistical methods | |
dc.subject | De-Noise | |
dc.subject | Feature extraction methods | |
dc.subject | Multi layer perceptron | |
dc.subject | Partial discharge signal | |
dc.subject | Time-resolved | |
dc.subject | Wavelet denoising | |
dc.subject | Wavelet transformations | |
dc.subject | XLPE cables | |
dc.subject | Neural networks | |
dc.title | Feature extraction method and neural network pattern recognition on time-resolved partial discharge signals | en_US |
dc.type | Conference paper | en_US |
dspace.entity.type | Publication |