Moving Particle Level-Set (MPLS) method for incompressible multiphase flow computation

No Thumbnail Available
Ng K.C.
Hwang Y.H.
Sheu T.W.H.
Yu C.H.
Journal Title
Journal ISSN
Volume Title
Elsevier B.V.
Research Projects
Organizational Units
Journal Issue
An implementation of a multiphase model in a recently developed Moving Particle Pressure Mesh (MPPM) particle-based solver is reported in the current work. By enforcing the divergence-free condition on the background mesh (pressure mesh), the moving particles are merely treated as observation points without intrinsic mass property, which has surmounted several computational deficiencies in the existing Moving Particle Semi-implicit (MPS) method. In the current work, in order to enhance the smoothness of the fluid interface and simulate interfacial flow with large density ratio without rigorous tuning of calibration parameters as required in most of the existing particle methods, a density interpolation scheme is put forward in the current work by using the conservative level-set method to ensure mass conservation. Several multiphase flow cases are simulated and compared with the existing numerical/theoretical solutions. It is encouraging to observe that the present solutions are more accurate than the numerical solutions based on the existing MPS methods. The proposal of the current Moving Particle Level-Set (MPLS) method thus provides a simple yet effective approach in computing incompressible multiphase flow within the numerical framework of particle method. � 2015 Elsevier B.V.
Mesh generation; Multiphase flow; Calibration parameters; Computational deficiency; Interpolation schemes; Level Set; Moving particle semi-implicit; Moving particle semiimplicit method; Moving particles; Particle methods; Numerical methods