Publication:
The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction

No Thumbnail Available
Date
2022
Authors
Adnan R.M.
Kisi O.
Mostafa R.R.
Ahmed A.N.
El-Shafie A.
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor and Francis Ltd.
Research Projects
Organizational Units
Journal Issue
Abstract
This paper focuses on the development of a robust accurate streamflow prediction model by balancing the abilities of exploitation and exploration to find the best parameters of a machine learning model. To do so, the simulated annealing (SA) algorithm is integrated with the mayfly optimization algorithm (MOA) as SAMOA to determine the optimal hyper-parameters of support vector regression (SVR) to overcome the exploration weakness of the MOA method. The proposed method is compared with the classical SVR and hybrid SVR-MOA. To examine the accuracy of the selected methods, monthly hydroclimatic data from Jhelum River Basin is used to predict the monthly streamflow on the basis of RMSE, MAE, NSE, and R2 indices. Test results show that the SVR-SAMOA outperformed the SVR-MOA and SVR models. SVR-SAMOA reduced the prediction errors of the SVR-MOA and SVR models by decreasing the RMSE and the MSE from 21.4% to 14.7% and from 21.7% to 15.1%, respectively, in the test stage. � 2022 IAHS.
Description
Balancing; Forecasting; Stream flow; Support vector machines; Exploitation and explorations; Machine learning models; Optimisations; Optimization algorithms; Prediction modelling; Simulated annealing integrated with mayfly optimization; Streamflow prediction; Support vector regression models; Support vector regressions; Support vectors machine; Simulated annealing; algorithm; mayfly; optimization; prediction; streamflow; support vector machine; Jhelum River
Keywords
Citation
Collections