Publication:
Fine tuning on support vector regression parameters for personalized english word-error correction algorithm

dc.citedby0
dc.contributor.authorHasan A.B.en_US
dc.contributor.authorKiong T.S.en_US
dc.contributor.authorPaw J.K.S.en_US
dc.contributor.authorTasrip E.en_US
dc.contributor.authorAzmi M.S.M.en_US
dc.contributor.authorid55378583800en_US
dc.contributor.authorid15128307800en_US
dc.contributor.authorid22951210700en_US
dc.contributor.authorid55378068700en_US
dc.contributor.authorid36994351200en_US
dc.date.accessioned2023-12-29T07:45:54Z
dc.date.available2023-12-29T07:45:54Z
dc.date.issued2012
dc.description.abstractA better understanding on word classification and regression could lead to a better detection and correction technique. We used different features or attributes to represent a machine-printed English word, and support vector machines is used to evaluate those features into two class types of word: correct and wrong word. Our proposed support vectors model classified the words by using fewer words during the training process because those training words are to be considered as personalized words. Those wrong words could be replaced by correct words predicted by the regression process. Our results are very encouraging when compared with Microsoft's spell checker, and further improvement is in sight.en_US
dc.description.natureFinalen_US
dc.identifier.epage20
dc.identifier.issue6
dc.identifier.scopus2-s2.0-84867162827
dc.identifier.spage15
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84867162827&partnerID=40&md5=01aa49f137f9eb7ebd4d67e2a5a389fe
dc.identifier.urihttps://irepository.uniten.edu.my/handle/123456789/30249
dc.identifier.volume6
dc.pagecount5
dc.sourceScopus
dc.sourcetitleAustralian Journal of Basic and Applied Sciences
dc.subjectArtificial intelligence
dc.subjectFPGA
dc.subjectStatistical theory
dc.subjectSupport vector machines
dc.titleFine tuning on support vector regression parameters for personalized english word-error correction algorithmen_US
dc.typeArticleen_US
dspace.entity.typePublication
Files
Collections