Publication: Voltage collapse risk index prediction for real time system's security monitoring
No Thumbnail Available
Date
2015
Authors
Aminudin N.
Rahman T.K.A.
Razali N.M.M.
Marsadek M.
Ramli N.M.
Yassin M.I.
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers Inc.
Abstract
Risk based security assessment (RBSA) for power system security deals with the impact and probability of uncertainty to occur in the power system. In this study, the risk of voltage collapse is measured by considering the L-index as the impact of voltage collapse while Poisson probability density function is used to model the probability of transmission line outage. The prediction of voltage collapse risk index in real time requires precise, reliable and short processing time. To facilitate this analysis, Artificial Intelligent using Generalize Regression Neural Network (GRNN) technique is proposed where the spread value is determined using Cuckoo Search (CS) optimization method. To validate the effectiveness of the proposed method, the performance of GRNN with optimized spread value obtained using CS is compared with heuristic approach. � 2015 IEEE.
Description
Electric lines; Heuristic methods; Interactive computer systems; Network security; Neural networks; Optimization; Probability density function; Real time systems; Risk assessment; Cuckoo searches; L index; Regression neural networks; Risk-based security; Voltage collapse; Outages